Відсоткові розрахунки застосовують при розв’язуванні багатьох практичних, економічних задач. Розглянемо три базові задачі, пов’язані із поняттям відсотка. Загально прийнята назва відсотків – проценти.
Знаходження відсотка від числа, числа за даним значенням відсотка, та відсоткового відношення двох чисел. Читати далі Відсотки. Основні поняття та базові задачи →
З метою повторення опрацьованого матеріалу з тригонометрії радимо розв’язати дані нижче завдання. Читати далі Узагальнення – тригонометрія . Д.з. курси 23.01.18 →
Поняття комплексних чисел вивчається у курсі шкільної математики практично наприкінці навчального року. І хоча ця тема поки що не виносилася на ЗНО, людям, які цікавляться математикою буде корисно узнати дещо поза шкільною програмою. Читати далі Комплексні числа – поза шкільною програмою →
Для засвоєння понять арифметичної та геометричної прогресії радимо виконати практичні завдання, що відповідають базовому рівню ЗНО: Читати далі Прогресії. Тести ЗНО →
Поняття відсотку та дробу безпосередньо пов’язані із поняттями відношення. Розглянемо основні властивості відношень, пропорцій, та методи розв’язання задач, із застосуванням їх властивостей. Читати далі Відношення і пропорції →
Розглянемо деякі ознаки подільності на 4, 7, 11, 13, що не так часто зустрічаються, як на 2, 3 ,5, 9,10. Але у задачах на властивості подільності до них доводиться звертатися досить часто. Особливо це стосується олімпіадних задач. Читати далі Ознаки подільності на 4,7,11,13 →
Логарифмом додатного числа b з основою a (a>0, a≠1) називається показник степеня, до якого треба піднести a, щоб отримати b. Читати далі Логарифм. Означення та основні властивості →
Нагадаємо, що для знаходження відсотка від числа необхідно це число помножити на відповідний десятковий дріб.
Інколи використовують і складання пропорції.
Розглянемо деякі з них. Читати далі Задачі на знаходження відсотка від числа →
Розглянемо основні числові множини (натуральні, цілі, раціональні, ірраціональні, дійсні числа) та їх властивості. Читати далі Дійсні числа. Основні поняття →
Підготовка до ЗНО. Учитель Світлана Пасько